Periodic Trends

objectives:

- 1. I can label the parts of the periodic table, including: metals/nonmetals/metalloids, families/groups, and valence electron trend by group.
- 2. I can use the periodic table to predict trends of given properties.
- 3. I can explain the electron trends for metals and nonmetals.
- 4. I can compare elements' electron attraction to their nuclei in regard to nuclear charge and e- distance by applying Coulomb's Law.
- 5. I can the use periodic table to predict the trends for atomic radius and ionization energy to estimate an element's reactivity.

Atomic Radius Ionization Energy Reactivity

Coulomb's Law

basis stability of atoms and ions and periodic trends

2 variables: distance and charges

Coulomb's law

Distance:

The closer two charges are, the stronger the force between them

Charge:

The greater the charges are, the stronger the force of attraction

F = Force

q = charge of a particle, need + and - to attract

r = radius (distance)

k = constant

- 1. Metals tend to (gain/lose?) electrons
- 2. Nonmetals tend to (gain/lose?) electrons
- 3. Which atom has the bigger radius? Why?
- a. Mg (#12) or Cl (#17)
- b. Mg(#12) or Ra (#88)
- 4. Which atom is more reactive? Why?
- a. K(#19) or Ca (20)
- b. Mg(#12) or Ra (#88)
- c. Cl (#17) or F(#9)
- 5. Which atom has the smaller ionization energy? Why?
- a. K(#19) or Ca (20)
- b. Mg (#12) or Cl (#17)
- c. Mg(#12) or Ra (#88)

periodic trends Reactivity 2015.notebook